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1. INTRODUCTION

Let X, Y be normed linear spaces with norms 11 0 IIx' 11 0 IIY, respectively,
and let U c X be a linear subspace with seminorm 10 Ill' Consider the inter
mediate spaces U c X w c X,

X w := {fEX;%(t,f;X, U)=6'(w(t»,t->O+l, (Ll)

where the JY'-functional is defined for fE X, t ~°by

,%'(t,!) :=%(t,f; X, U):= inf {Ilf- gllx + t Igllll (1.2)
gEli

and w is a modulus of continuity, namely a function, continuous and
monotone increasing on lO, 00), satisfying the properties (cf. [17, p. 96 fT.])

w(O) = 0, wet) >° for t > 0. (1.3)

Let N be the set of natural numbers and {Rnl nEN a sequence of operators on
X into Y (e.g., remainders, cf. Section 3) which are sublinear and bounded,
i.e., the operator norm
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is finite for each n E N. If {lpn}nEN is a sequence of real numbers satisfying

Ipn > 0 for n EN, lim Ipn = 0 monotonely,
n-OC!

(1.4 )

then one has the familiar direct approximation (or Jackson-type) theorem
(cf. [6] and the literature cited there):

THEOREM 1. If the operators R n satisfy the boundedness condition

(fEX,nE N) (1.5)

and the Jackson-type inequality

(gE U, nE N), (1.6)

then for fE X w one has the rate of convergence

(n ~ 00). ( 1.7)

Indeed, for any f E X, g E U

and therefore in view of the definitions (1.1-1.2)

for any IE X",.
It is the purpose of this note to show that the assertion of Theorem I is

sharp. More specifically, for moduli of continuity satisfying

sup w(t)/t = 00
1>0

(1.8)

it will be shown in Section 2 (cf. Theorem 2, Corollary I) that for rather
general sequences {R n } (e.g., the operators R n need not be commutative)
there exists an element fw EX", for which the rate (1. 7) cannot be improved
to o(w(lpn»' The method of proof essentially consists in the familiar gliding
hump method (cf. (5, p. 18]), but now equipped with rates. Indeed, the
results of Section 2 may also be considered as a contribution to the question
of how to treat the classical uniform boundedness principle with rates (cf.
Theorem 3). Another important feature is that Bernstein inequalities of type
(2.1, 2.2, 2.11) are used in the course of the proof. In Section 3 some first
applications are outlined emphazising the flexibility of this approach. For the
interconnection with theorems of Banach-Steinhaus-type (cf. ]3] and the
literature cited there) we refer to 18].
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2. THE GLIDING HUMP METHOD WITH RATES
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Let US commence with a general approach to certain counterexamples in
approximation theory.

THEOREM 2. Let X be a Banach space, Ya normed linear space, U c X
a linear subspace, and X w be given by (1.1). Let {qJn} and W satisfy (1.4) and
(1.3, 1.8), respectively. If for a sequence of sublinear, bounded operators R n
of X into Y there exist elements hnE U such that for all n E N

II hnllx ~ Cl'

Ihnlu~ C2 qJ;;l,

0< C3 ~ IIRnhnll y,

then for each space X w there exists an element f w E X w such that

(2.1 )

(2.2)

(2.3)

(n -t 00). (2.4)

Proof First of all we note that (1.3) always implies (cf. [17, p. 99])

W(s)/s ~ 2w(t)/t

Assume that for each fE X w

for any s ~ t > O. (2.5)

(2.6)

Starting with an arbitrary n1 E N, one may successively construct a
monotonely increasing subsequence {n k } c N such that the following
conditions are simultaneously satisfied (k ~ 2):

k~l

~ w(qJn)hnj ~ w(qJn)hnk' (2.8)
j=l

IIRnk_,II[x,Yl ~ (C3/6C1) w(qJnk-l)/(w(qJn)' (2.9)

IIRnkgk-llly~ (C3 /3)w(qJn)' (2,10)
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Indeed, (2.7,2.9) may be satisfied in view of (1.3-1.4) and (2.8) in view of
(1.8), (2.5), whereas (2.10) is a consequence of the assumption (2.6). By
(2.1, 2.7) it follows that

Therefore gw:= LJ~1 w(~n.) hn. is well defined as an element of X since X is
J J

complete. Moreover, gw E X w' Indeed, for each t E (0, ~n) there exists
k( ;= kEN such that ~nk+l::;;; t < ~nk' Using the corresponding gk E U and
conditions (2.1-2.2), (2.7-2.8), and finally (1.3), (2.5), one has in view of
definition (1.2)

,%'(t, gw)::;;; II gw - gkllx + t Igklu

= '11 f: W(~n) hnj II + t I±W(~n) hnj I
j=k+l X J=I U

::;;; 2C I W(~nk+l) + 2CztW(~n)/~nk

::;;; (2C I +4Cz) w(t).

This proves that gw E X w' Applying R nk to

gw = w(~nk) hnk +gk-l + (gw - gk)'

one obtains by (2.3) and (2.9-2.10) that

IIRnkgwlly >IIRnkw(~n) hnJy -IIRnkgk-llly

-IIRnJlrx.Y111 gw - gkllx

>C3w(~n)[1-1-H

Of course, this is a contradiction to (2.6), proving the assertion.
The preceding proof contains all the ingredients of the classical gliding

hump method, including the construction of a convergent series such that the
kth element of the series is "large with respect to the operator R n /' As a
first contribution to the present treatment one may consider that of
Teljakovskii [16 J concerning multipliers of uniform convergence, reflecting,
however, rather specific features of the one-dimensional trigonometric
system. This was further developed in [13 J in connection with multipliers of
strong convergence for regular biorthogonal systems but still using a very
special projection property.

Apart from the order w(~n) built in, the main distinction from the
classical gliding hump method is that the limit gw of the series occurring in
the course of the proof is not only an element of the underlying Banach
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space X but of the subspace X w ' too. To this end condition (2.2) is needed
which, in connection with (2.1), may be interpreted as a weak form of a
Bernstein-type inequality for the sequence {h n }. In fact, the standard version
of such an inequality would read

(2.11 )

which together with (2.1) implies (2.2) (cf. treatment of the examples in
Sections 3.1, 3.6). Naturally the use of a Bernstein-type inequality does not
surprise one in view of the fact that Theorem 2 is a first step in a direction
that is inverse to the Jackson-type Theorem 1 (cf. Corollary 1).

For a further interpretation of the conditions (2.1-2.3) consider first
(2.1, 2.3). These conditions state that the operator norms II Rn II are bounded
away from zero, namely,

i.e., a condition of type (1.5) should be best possible. In the same sense
conditions (2.2-2.3) state that

i.e., the Jackson-type inequality (1.6) should be best possible. In fact, in
terms of the seminorm (cf. (1.1-1.2))

Iflw := sup%(t,J)jw(t)
1>0

the assertions of Theorems 1,2 may be summarized to the following result,
stating that the estimate (1. 7) cannot be improved.

COROLLARY 1. Under the assumptions of Theorems 1, 2, including that
conditions (1.6), (2.2) be satisfied for the same sequence {fPn}' there exist
constants co' Co such that

Proof. The upper estimate is a consequence of the proof of Theorem 1
(with Co = C). Concerning the lower estimate, first observe that the Jackson
type inequality (1.6) together with (1.8), (2.5) now implies that (2.6) is not
merely an assumption but actually satisfied for each IE U. Therefore a
subsequence may be constructed such that conditions (2.7-2.9) as well as
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(2.10) hold true. This leads to a constructive version of the proof of
Theorem 2, actually delivering some gw E X w such that

Thus the lower estimate follows with Co = C3 /6(C1 + 2Cz).
The result of Theorem 2 may also be interpreted as a uniform boun

dedness principle with rates. Indeed,

THEOREM 3. Let the assumptions of Theorem 2 be valid but with (2.3)
replaced by

(n EN). (2.3)*

Iffor every fE X w

(n --t (0), (2.12)

then the operator norms necessarily satisfy the growth condition

(n --t (0). (2.13)

Proof Assume that (2.13) does not hold. Then for R n := w(rpn)R n one
has that IIRnlllx Y) ~ C, at least for a subsequence. By (2.3)* it follows that
the sequence {it} satisfies (2.3) with C3 = CfC. Hence an application of
Theorem 2 to {Rn} delivers an element f w E X w such that IIRnfwlly:;tO
o(w(rpn))' a contradiction to (2.12).

Concerning condition (2.3)*, one may mention that the definition of the
operator norm IIRnllrx,YI actually implies the existence of some fn E X (even
fnE U if U is dense in X) such that Ilfnllx= I and IIRnfnlly~cIIRnlllx,}I'

where 0 <c < 1 is a given constant.
In present terms the classical uniform boundedness principle states that

IIR nflly = 0(1) for every f of the whole Banach space X implies
IIRnll[x,YI = 6"(1) (and not 0(1)). It reflects the fact that the limiting case
X w = X, i.e., w(t) = const., is excluded by (1.3). In this connection we also
note that the assertion of Theorem 3 cannot be true for the other limiting
case w(t) = t; in fact it is excluded by (1.8) (cf. Section 3.4).

3. ApPLICATIONS

The purpose of this section is to treat some first examples illustrating the
usefulness of Theorem 2. Most of the results, possibly apart from those of
Sections 3.4-3.6, are quite standard, contained in many textbooks. It is
hoped, however, that the present treatment at least indicates the unified



COUNTEREXAMPLES IN APPROXIMATION 167

approach to the subject. For further applications, including numerical
solutions of initial value problems, see [7,8].

Concerning the applications to periodic problems given in
Sections 3.1-3.4, let Xz" be either Cz" or L~", 1~ p < 00, the spaces of 2n
periodic continuous or Lebesgue-integrable functions f with finite norms

Ilfllx := max If(x)1
2~ x

or
\ 1 " /IIP

:= I 2n L" If(u)IP du\ '

respectively. If X<{~ denotes the subspace of functions r-times differentiable in
Xz" with seminorm Ifl"rl := Ilprlllx , then the corresponding %-functional

A~1t 21'1'

may be characterized in terms of the rth modulus of continuity

Le., there are constants cl' Cz > 0 such that (cf. [4, p. 192])

c1 wr(t,f; Xz,,) ~%(t',f; Xz", X<{D ~ Czw,(t,f; Xz,,)' (3.1)

Concerning the applications to algebraic problems treated in
Sections 3.5-3.6, let C[-1, 1] denote the space of functions continuous on
the compact interval [-1, 1] with the usual maximum norm 11 0 lie and

u:= l g E C[-I, 1]; Iglu:= sup 1(1- XZ) g(Z)(x)1 < 00 I. (3.2)I -l<x< I I
Then the intermediate spaces X a := X w for wet) = ta

, 0 < a ~ 1, as defined
by (1.1-1.2) may be characterized via

X a = IfE C[-I,lj; sup 1(I-xZtJ~f(x)I=&(hza)l,
I -I+h<;;;x<;;;l-h \ (3.3)

J~f(x) :=f(x-h)-2f(x)+f(x+h) (-1 +h~x~ I-h,h~O)

(cf. l1; 9]). Moreover, for 0 <a < 1 (and n -+ 00)

fE X a~ E"lfl:= inf Ilf - p"llcr-l.ll = &(n-
Za

), (3.4)
PnE.?"

where c9" denotes the set of algebraic polynomials of degree at most n (see
l15]).

3.1. Fourier Partial Sums

For the Fourier partial sums

(S"j)(x):= I f~(k) eikx,
Ikl<;;;"

~ 1 fIt 'kf (k):= - feu) e- l
U du,

2n _It
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one has the well known direct estimate

Theorem 2 then reestablishes the fact that this approximation rate is best
possible for X 27r = C27r ' L~". Indeed,

COROLLARY 2. Let X 2" = C27r or L~". For each w satisfying (1.3,1.8)
there exists a function fw E Xz" such that

wr(t, fw; Xz,,) = &(w(t'»

II Snfw - fwllx *Q(w(n- r) log n)
2.

(t -.0+),

(n -. (0).

Proof Let us check the conditions of Theorem 2 for X = Y = C27r'

U = C~~, and for the linear bounded operators Rn= [Sn - IJilog n, where I
is the identity. Since II Snil [Ch.Ch) ~ clog n, there are elements fn E C27r with
IIfnllch =1 and IISnfnllch~c'logn. Now choose hn=Dnfn' where
Dn := (lIn) L~~n+l Sk are the standard delayed means of de la Vallee
Poussin. Then (cf. [5, p. 108]) {h n } is a sequence of trigonometric
polynomials of degree {2n} satisfying (2.1-2.2) with ({In = n- r as a conse
quence of the classical Bernstein inequality. Condition (2.3) is fulfilled since
for sufficiently large n

Then an application of Theorem 2 in connection with the characterization
(3.1) completes the proof.

The present treatment may be compared with the classical one given by
Lebesgue [11]; for stronger results see [14a].

3.2. The Singular Integral of de La Vallee Poussin

For the singular integral of de La Vallee Poussin

._ y (n!)2 ~ ikx

(Vnf)(x) .- Ikl<n (n _ k)! (n +k)! f (k) e

it is known that (cf. [5, p. 113])

(IE X 27r , n -. (0). (3.2.1)
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COROLLARY 3. For each w satisfying (1.3, 1.8) there exists a function

f w E Xz" such that

w 2(t,fw; Xz,,) = &(w(t2))

II V"fw - fwllx2. *&(w(n-
1»

(t -+ 0+),

(n -+ 00). (3.2.2)

Proof Consider X = Y = X z", U = X<Z~, and the linear bounded
operators R" = V,,2 - I. For the elements h" E U one may choose
h,,(x) = ei"x. Obviously they satisfy (2.1-2.2) with <fJ" = n- 2

• Since

tends to le- 1
- 11 * 0, one also has (2.3) for n large enough. So Theorem 2

and (3.1) establish (3.2.2), first only for the subsequence {n 2
}, but this

already implies (3.2.2) completely.
For w(t) = ta

, 0 < a < 1, Corollary 3 may be found in [14, p. 1841 using
the testfunction Isin u la. Moreover, in this case even a Bernstein-type inverse
theorem is valid; it states that II V"f - fll = &(n- a/2) ensures f to belong to
the corresponding Lipschitz class of order a (cf. [5, p. 114]).

3.3 Best Approximation in X 2"

Concerning the, error of best approximation of a function fE X 2" by
trigonometric polynomials t" of degree at most n (i.e., t" E II,,) one has that
(cf. [12, p. 58])

(3.3.1)

COROLLARY 4. For each w satisfying (1.3, 1.8) there exists a function
fw E Xz" such that

wr(t,fw; X 2,,) = &(w(t r
))

E:(Jw; Xz,,) =1= o(w(n- r
))

(t -+ 0+),

(n -+ 00).

Proof Let us check the conditions of Theorem 2 for X = Xz", Y = R
(:= set of reals), U = X<Z~, and for the sublinear bounded operators
R"f= E:(J; X 2,,). For h,,(x) = cos(n + l)x one has (2.1-2.2) with <fJ" = n- r

•

Since g"(n+ 1)~E:(g;X2") for each gEX2", one also has IR"h"l~

h:(n + 1) = 1/2. So Theorem 2 and (3.1) prove this corollary.
In case X 2" = Cz", w(t) = ta, 0 < a < 1, Corollary 4 is also given in

[10, p. 55] via a construction of a testfunction similar to a gliding hump
method. But the proof uses very specific features of the maximum norm and
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the one-dimensional trigonometric system. Note that (3.3.1) is again best
possible in the sense of a Bernstein inverse theorem (see, e.g., 117,
p. 331 ff. D.

3.4. Compound Quadrature Formulae

Consider an (n-fold) compound quadrature formula for the approximate
calculation of the integral f~,.f(u) du,

ns 1 n-I S

Qnf:= L anjf(xnj) := - 2: L bkf(-n +«2m + I)n +Yk)/n),
j=1 n m=O k=1

where fEC2,., -n:<Yk<n, and L~=lbk=2n. If IEC~:-I) is such that
I<r-o is absolutely continuous, then (see, e.g., [2, p. 168])

(3.4.1 )

where k r denotes a certain 2n-periodic bounded kernel. Since for r ~ 1 each
IE (L~,.)(r) is equal a.e. to an (r - 1)-times absolutely continuous function
with rth derivative in L~" (cf. [5, p. 363]), one may restrict oneself to
continuous representatives offE A1~ if r ~ 1, which in particular leads to an
interpretation of (3.4.1) for fE A1~. This implies the Jackson-type inequality

IR~fl:< Crn- rIIfr)Ilx,.,
valid for any IE Xi~, r ~ 1. Since also

(3.4.2)

IR~fl :< Co Ilflle,. (3.4.3)

Theorem 1 and (3.1) for X = Ch , Y = R, U = qr~, and <{in = n- r deliver

(3.4.4 )

Moreover, one may apply Theorem 1 to

II/lIx := II!' IIx,.,
(3.4.5 )

Y=R,

Since for fE X

the characterization (3.1) yields

(3.4.6 )
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for any fE X, in fact for any fE X~~. With Theorem 2 one obtains that
(3.4.4, 3.4.6) are best possible.

COROLLARY 5. For each w satisfying (1.3, 1.8) there exists

(i) a function fw E Ch such that

wr(t,fw; Ch ) = &(w(tr)) (t ---+ 0+),

IR~fwl =t= o(w(n- r)) (n ---+ (0),

(ii) a functions f wE ~~ such that

wr_1(t, f'w; X h ) = &(W(t'-l)) (t ---+ 0+), (3.4.7)

IR~fwl =t= o(n-1w(n- r+ I)) (n ---+ (0). (3.4.8)

Proof (i): For X = C2", Y = R, U = C~~, and for the linear bounded
operators R n = R~ the conditions of Theorem 2 are satisfied for

hn(x) = h(nx),
s

h(x):= n sin 2(x - Yk)'
k~l

({In = n- r. (3.4.9)

Concerning (2.3), note that hn(xnj) = 0, and so

(ii): For X, Y, U, Rn as in (3.4.5) the conditions of Theorem 2 hold
true. Indeed, with h as given by (3.4.9) the elements hn E U,

hn(x) = h(nx)/n, h(X) := h(x) - h-(0),

satisfy (2.1-2.2) with ({In=n- r+ 1 as well as (2.3) since

ns

= L anjh-(O) = 2nh-(0) > O.
j~l

So an application of Theorem 2 in connection with the corresponding
characterization of the X-functional completes the proof.

Let us mention that this example shows that the case w(t) = t has to be
excluded in Theorems 2, 3. Indeed, for the reflexive spaces X h = L~",

1 <p < 00, condition (3.4.7) implies f~) E X 2" (see, e.g., [5, p. 368]). But
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then (3.4.1) implies (cf. [2, p. 220]) that IR~fwl = <:>(n- r
), in contrast to

(3.4.8). Thus Corollary 5(ii) is not true in the saturation case w(t) = t.

3.5. Polya Quadrature Formula

Let xnj := -cos(2j - 1)7r/2n, 1 <'j <, n, denote the zeros of the Chebyshev
polynomial Tn (x ) := cos(n arc cos x) E ~. Then the Polya quadrature
formula Q~ for fE C[-I, 1) is given by

n

~f:= ~ Qnjf(xnj ),
j~1

1

R~f:= Q~f- f f(u) du,
-I

where the weights anj ? 0 are such that R~Pn_1 = 0 for all Pn-I E Y'n -I (cf.
[2, p. 116, 136 IT.)). Since for any Pn-I E Y'n_1

IR~fl = IR~(f- Pn-I)I <, 411f- Pn-lller-l,IJ'

one obtains by (3.4) that fEXa implies IR~fl=&(n-2a) for each
o< a < 1. This result is best possible. Indeed,

COROLLARY 6. For each 0 <a < 1 there exists fa E Xa (cf (3.3)) such
that IR~fa 1"* <:>(n- 2a ).

Proof For X = C[-I, 11, Y = R, U as given by (3.2), and the operators
Rn=R~ the elements hn=T~ satisfy (2.1-2.2) with ({In=n- 2. Condition
(2.3) holds since hn(xnj) = 0, and therefore

IRnhnl= IQ~T~-(I T~(U)dul=(1 T~(u)du

1 2
= 1 - 4n2 _ 1 ? 3'

3.6. Lagrange Interpolation

The Lagrange interpolation polynomial of degree n - 1 with respect to the
Chebyshev nodes xnj (cf. Section 3.5) is given by

n

Ln_I(f; x):= L Inix)flxnj)'
j~1

n

Inix ):= n
k~l

k*j

where -1 <,x<, 1 andfE C[-I, 1)(=: C). Since

I/Lnf - fllc <, OILnll[c,Cl + I) EnU),

c, log n <, IILnll[c,Cl <, czlog n,
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one obtains by (3.4) that for 0 <a < 1

fE Xl> => IILJ - file = &(n- 2a log n).

On the other hand, an application of Theorem 2 yields
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COROLLARY 7. For each 0 < a < I there exists fa E Xa (if (3.3» such
that

(n -> 00).

Proof The proof is an algebraic version of that of Corollary 2, the
delayed means of de la Vallee Poussin being replaced by the Fejer-Hermite
operators. Indeed, with X = Y = C[ - 1, 1j, U as given by (3.2),
Rn= [L n- IJllog n, one may consider the elements hn= Hnfn' where
fnEC[-I, IJ is such that Ilfnlle= 1 and IILn/"lle~clogn, and

• • _ _ 2 2 ~~ 1 - xxnj

Hn(f; x) . - n Tn(x) /::\ f(xnj) (x _ xnY

are the Fejer-Hermite interpolating polynomials of degree 2n ~ 1 (cf.
[14, p. 397 tT. D. Thus (2.1-2.2) are satisfied with tfJn = n- 2 in view of the
algebraic Bernstein inequality IPnIv ~ cn2 II Pn lie (cf. [17, p. 227 D·
Concerning (2.3) one has LnHnf= Lnf and thus again

~c' > O.

Hence an application of Theorem 2 completes the proof.
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